Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.095
Filtrar
1.
Commun Biol ; 7(1): 334, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491121

RESUMO

VPS37A, an ESCRT-I complex component, is required for recruiting a subset of ESCRT proteins to the phagophore for autophagosome closure. However, the mechanism by which VPS37A is targeted to the phagophore remains obscure. Here, we demonstrate that the VPS37A N-terminal domain exhibits selective interactions with highly curved membranes, mediated by two membrane-interacting motifs within the disordered regions surrounding its Ubiquitin E2 variant-like (UEVL) domain. Site-directed mutations of residues in these motifs disrupt ESCRT-I localization to the phagophore and result in defective phagophore closure and compromised autophagic flux in vivo, highlighting their essential role during autophagy. In conjunction with the UEVL domain, we postulate that these motifs guide a functional assembly of the ESCRT machinery at the highly curved tip of the phagophore for autophagosome closure. These results advance the notion that the distinctive membrane architecture of the cup-shaped phagophore spatially regulates autophagosome biogenesis.


Assuntos
Autofagossomos , Autofagia , Autofagossomos/metabolismo , Autofagia/fisiologia , Membranas Intracelulares/metabolismo , Endossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
2.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38546617

RESUMO

Abscission is the final step of cytokinesis that allows the physical separation of sister cells through the scission of the cellular membrane. This deformation is driven by ESCRT-III proteins, which can bind membranes and form dynamic helices. A crucial step in abscission is the recruitment of ESCRT-III proteins at the right time and place. Alix is one of the best characterized proteins that recruits ESCRT-III proteins from yeast to mammals. However, recent studies in vivo have revealed that pathways acting independently or redundantly with Alix are also required at abscission sites in different cellular contexts. Here, we show that Lgd acts redundantly with Alix to properly localize ESCRT-III to the abscission site in germline stem cells (GSCs) during Drosophila oogenesis. We further demonstrate that Lgd is phosphorylated at multiple sites by the CycB/Cdk1 kinase. We found that these phosphorylation events potentiate the activity of Shrub, a Drosophila ESCRT-III, during abscission of GSCs. Our study reveals that redundancy between Lgd and Alix, and coordination with the cell cycle kinase Cdk1, confers robust and timely abscission of Drosophila germline stem cells.


Assuntos
Proteínas de Drosophila , Complexos Endossomais de Distribuição Requeridos para Transporte , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteína Quinase CDC2/genética , Citocinese/genética , Células Germinativas/metabolismo , Drosophila/metabolismo , Células-Tronco , Mamíferos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ciclina B
3.
Am J Hum Genet ; 111(3): 594-613, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38423010

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Assuntos
Epilepsia Generalizada , Atrofia Óptica , Animais , Humanos , Criança , Peixe-Zebra/genética , Atrofia Óptica/genética , Fenótipo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
4.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 46-55, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372114

RESUMO

Lung adenocarcinoma (LUAD) is a common pathological type of non-small cell lung cancer; identifying preferable biomarkers has become one of the current challenges. Given that VTA1 has been reported associated with tumor progression in various human solid cancers but rarely reported in LUAD, herein, RNA sequencing data from TCGA and GTEx were obtained for analysis of VTA1 expression and differentially expressed gene (DEG). Furthermore, functional enrichment analysis of VTA1-related DEGs was performed by GO/KEGG, GSEA, immune cell infiltration analysis, and protein-protein interaction (PPI) network. In addition, the clinical significance of VTA1 in LUAD was figured out by Kaplan-Meier Cox regression and prognostic nomogram model. R package was used to analyze incorporated studies. As a result, VTA1 was highly expressed in various malignancies, including LUAD, compared with normal samples. Moreover, high expression of VTA1 was associated with poor prognosis in 533 LUAD samples, as well as T stage T2&T3&T4, N stage N1&N2&N3, M stage M1, pathologic stage II&III&IV, and residual tumor R1&R2, et al. (P < 0.05). High VTA1 was an independent prognostic factor in Cox regression analysis; Age and cytogenetics risk were included in the nomogram prognostic model. Furthermore, a total of 4232 DEGs were identified between the high- and the low-expression group, of which 736 genes were up-regulated and 3496 genes were down-regulated. Collectively, high expression of VTA1 is a potential biomarker for adverse outcomes in LUAD. The DEGs and pathways recognized in the study provide a preliminary grasp of the underlying molecular mechanisms of LUAD carcinogenesis and progression.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Complexos Endossomais de Distribuição Requeridos para Transporte , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Carcinogênese , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Prognóstico , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
5.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38319250

RESUMO

Endosomes are specialized organelles that function in the secretory and endocytic protein sorting pathways. Endocytosed cell surface receptors and transporters destined for lysosomal degradation are sorted into intraluminal vesicles (ILVs) at endosomes by endosomal sorting complexes required for transport (ESCRT) proteins. The endosomes (multivesicular bodies, MVBs) then fuse with the lysosome. During endosomal maturation, the number of ILVs increases, but the size of endosomes does not decrease despite the consumption of the limiting membrane during ILV formation. Vesicle-mediated trafficking is thought to provide lipids to support MVB biogenesis. However, we have uncovered an unexpected contribution of a large bridge-like lipid transfer protein, Vps13, in this process. Here, we reveal that Vps13-mediated lipid transfer at ER-endosome contact sites is required for the ESCRT pathway. We propose that Vps13 may play a critical role in supplying lipids to the endosome, ensuring continuous ESCRT-mediated sorting during MVB biogenesis.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/genética , Lipídeos , Corpos Multivesiculares , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transporte Proteico
6.
Cell Commun Signal ; 22(1): 150, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38403678

RESUMO

BACKGROUND: Small extracellular vesicles (EVs), exemplified by exosomes, mediate intercellular communication by transporting proteins, mRNAs, and miRNAs. Post-translational modifications are involved in controlling small EV secretion process. However, whether palmitoylation regulates small EV secretion, remains largely unexplored. METHODS: Vacuole Membrane Protein 1 (VMP1) was testified to be S-palmitoylated by Palmitoylation assays. VMP1 mutant plasmids were constructed to screen out the exact palmitoylation sites. Small EVs were isolated, identified and compared between wild-type VMP1 or mutant VMP1 transfected cells. Electron microscope and immunofluorescence were used to detect multivesicular body (MVB) number and morphology change when VMP1 was mutated. Immunoprecipitation and Mass spectrum were adopted to identify the protein that interacted with palmitoylated VMP1, while knock down experiment was used to explore the function of targeted protein ALIX. Taking human Sertoli cells (SCs) and human spermatogonial stem cell like cells (SSCLCs) as a model of intercellular communication, SSCLC maintenance was detected by flow cytometry and qPCR at 12 days of differentiation. In vivo, mouse model was established by intraperitoneal injection with palmitoylation inhibitor, 2-bromopalmitate (2BP) for 3 months. RESULTS: VMP1 was identified to be palmitoylated at cysteine 263,278 by ZDHHC3. Specifically, palmitoylation of VMP1 regulated its subcellular location and enhanced the amount of small EV secretion. Mutation of VMP1 palmitoylation sites interfered with the morphology and biogenesis of MVBs through suppressing intraluminal vesicle formation. Furthermore, inhibition of VMP1 palmitoylation impeded small EV secretion by affecting the interaction of VMP1 with ALIX, an accessory protein of the ESCRT machinery. Taking SCs and SSCLCs as a model of intercellular communication, we discovered VMP1 palmitoylation in SCs was vital to the growth status of SSCLCs in a co-culture system. Inhibition of VMP1 palmitoylation caused low self-maintenance, increased apoptosis, and decreased proliferation rate of SSCLCs. In vivo, intraperitoneal injection of 2BP inhibited VMP1 palmitoylation and exosomal marker expression in mouse testes, which were closely associated with the level of spermatogenic cell apoptosis and proliferation. CONCLUSIONS: Our study revealed a novel mechanism for small EV secretion regulated by VMP1 palmitoylation in Sertoli cells, and demonstrated its pivotal role in intercellular communication and SSC niche.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Vesículas Extracelulares , Lipoilação , Proteínas de Membrana , Animais , Humanos , Camundongos , Comunicação Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Vesículas Extracelulares/metabolismo , Proteínas de Membrana/metabolismo , Vacúolos/metabolismo
7.
Nat Aging ; 4(3): 319-335, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388781

RESUMO

Plasma membrane damage (PMD) occurs in all cell types due to environmental perturbation and cell-autonomous activities. However, cellular outcomes of PMD remain largely unknown except for recovery or death. In this study, using budding yeast and normal human fibroblasts, we found that cellular senescence-stable cell cycle arrest contributing to organismal aging-is the long-term outcome of PMD. Our genetic screening using budding yeast unexpectedly identified a close genetic association between PMD response and replicative lifespan regulations. Furthermore, PMD limits replicative lifespan in budding yeast; upregulation of membrane repair factors ESCRT-III (SNF7) and AAA-ATPase (VPS4) extends it. In normal human fibroblasts, PMD induces premature senescence via the Ca2+-p53 axis but not the major senescence pathway, DNA damage response pathway. Transient upregulation of ESCRT-III (CHMP4B) suppressed PMD-dependent senescence. Together with mRNA sequencing results, our study highlights an underappreciated but ubiquitous senescent cell subtype: PMD-dependent senescent cells.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Longevidade , Proteína Supressora de Tumor p53/genética , Fibroblastos , Membrana Celular/metabolismo , Senescência Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(9): e2318046121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386713

RESUMO

Apoptosis linked Gene-2 (ALG-2) is a multifunctional intracellular Ca2+ sensor and the archetypal member of the penta-EF hand protein family. ALG-2 functions in the repair of damage to both the plasma and lysosome membranes and in COPII-dependent budding at endoplasmic reticulum exit sites (ERES). In the presence of Ca2+, ALG-2 binds to ESCRT-I and ALIX in membrane repair and to SEC31A at ERES. ALG-2 also binds directly to acidic membranes in the presence of Ca2+ by a combination of electrostatic and hydrophobic interactions. By combining giant unilamellar vesicle-based experiments and molecular dynamics simulations, we show that charge-reversed mutants of ALG-2 at these locations disrupt membrane recruitment. ALG-2 membrane binding mutants have reduced or abrogated ERES localization in response to Thapsigargin-induced Ca2+ release but still localize to lysosomes following lysosomal Ca2+ release. In vitro reconstitution shows that the ALG-2 membrane-binding defect can be rescued by binding to ESCRT-I. These data thus reveal the nature of direct Ca2+-dependent membrane binding and its interplay with Ca2+-dependent protein binding in the cellular functions of ALG-2.


Assuntos
Fenômenos Fisiológicos Celulares , Membranas Intracelulares , Membranas , Divisão Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
10.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38180476

RESUMO

K63-linked ubiquitin chains attached to plasma membrane proteins serve as tags for endocytosis and endosome-to-lysosome sorting. USP8 is an essential deubiquitinase for the maintenance of endosomal functions. Prolonged depletion of USP8 leads to cell death, but the major effects on cellular signaling pathways are poorly understood. Here, we show that USP8 depletion causes aberrant accumulation of K63-linked ubiquitin chains on endosomes and induces immune and stress responses. Upon USP8 depletion, two different decoders for K63-linked ubiquitin chains, TAB2/3 and p62, were recruited to endosomes and activated the TAK1-NF-κB and Keap1-Nrf2 pathways, respectively. Oxidative stress, an environmental stimulus that potentially suppresses USP8 activity, induced accumulation of K63-linked ubiquitin chains on endosomes, recruitment of TAB2, and expression of the inflammatory cytokine. The results demonstrate that USP8 is a gatekeeper of misdirected ubiquitin signals and inhibits immune and stress response pathways by removing K63-linked ubiquitin chains from endosomes.


Assuntos
Fator 2 Relacionado a NF-E2 , NF-kappa B , Ubiquitina Tiolesterase , Endossomos/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , Ubiquitina/genética , Humanos , Ubiquitina Tiolesterase/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
11.
FEBS Lett ; 598(1): 48-58, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857501

RESUMO

The discovery of microautophagy, the direct engulfment of cytoplasmic material by the lysosome, dates back to 1966 in a morphological study of mammalian cells by Christian de Duve. Since then, studies on microautophagy have shifted toward the elucidation of the physiological significance of the process. However, in contrast to macroautophagy, studies on the molecular mechanisms of microautophagy have been limited. Only recent studies revealed that ATG proteins involved in macroautophagy are also operative in several types of microautophagy and that ESCRT proteins, responsible for the multivesicular body pathway, play a central role in most microautophagy processes. In this review, we summarize our current knowledge on the function of ATG and ESCRT proteins in microautophagy.


Assuntos
Autofagia , Microautofagia , Animais , Autofagia/fisiologia , Lisossomos/metabolismo , Citosol/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Mamíferos/metabolismo
12.
Genes Chromosomes Cancer ; 63(1): e23197, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37642440

RESUMO

Calcified chondroid mesenchymal neoplasms represent a distinct, and recently recognized, spectrum of tumors. To date most cases have been reported to be characterized by FN1 gene fusions involving multiple potential tyrosine kinase partners. Following incidental identification of a tumor morphologically corresponding to calcified chondroid mesenchymal neoplasm, but with a PDGFRA::USP8 gene fusion, we undertook a retrospective review to identify and characterize additional such cases. A total of four tumors were identified. Each was multilobulated and composed of polygonal-epithelioid-stellate cells with a background of chondroid matrix containing distinctive patterns of calcification. Targeted RNA sequencing revealed an identical PDGFRA (exon 22)::USP8 (exon 5) gene fusion in each case. Subsequent immunohistochemical staining confirmed the presence of PDGFRα overexpression. In summary, we report a series of four tumors within the morphologic spectrum of calcified chondroid mesenchymal neoplasms. In contrast to prior reports, these tumors harbored a novel PDGFRA::USP8 gene fusion, rather than FN1 rearrangement. Our findings expand the molecular diversity of these neoplasms, and suggest they are united through activation of protein kinases.


Assuntos
Neoplasias de Tecido Conjuntivo e de Tecidos Moles , Neoplasias de Tecidos Moles , Humanos , Proteínas Tirosina Quinases/genética , Fusão Gênica , Receptores Proteína Tirosina Quinases/genética , Neoplasias de Tecidos Moles/genética , Biomarcadores Tumorais/genética , Endopeptidases/genética , Ubiquitina Tiolesterase/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
13.
J Hum Genet ; 69(2): 85-90, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030753

RESUMO

Ubiquitin-specific protease 8 (USP8) is a deubiquitinating enzyme involved in deubiquitinating the enhanced epidermal growth factor receptor for escape from degradation. Somatic variants at a hotspot in USP8 are a cause of Cushing's disease, and a de novo germline USP8 variant at this hotspot has been described only once previously, in a girl with Cushing's disease and developmental delay. In this study, we investigated an exome-negative patient with severe developmental delay, dysmorphic features, and multiorgan dysfunction by long-read sequencing, and identified a 22-kb de novo germline deletion within USP8 (chr15:50469966-50491995 [GRCh38]). The deletion involved the variant hotspot, one rhodanese domain, and two SH3 binding motifs, and was presumed to be generated through nonallelic homologous recombination through Alu elements. Thus, the patient may have perturbation of the endosomal sorting system and mitochondrial autophagy through the USP8 defect. This is the second reported case of a germline variant in USP8.


Assuntos
Hipersecreção Hipofisária de ACTH , Feminino , Humanos , Endopeptidases/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células Germinativas/metabolismo , Mutação em Linhagem Germinativa/genética , Hipersecreção Hipofisária de ACTH/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
14.
Int J Oncol ; 64(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38038147

RESUMO

Charged multivesicular body protein 3 (CHMP3) is an elemental constituent of the endosomal sorting complex required for transport (ESCRT) III, whose function as a tumor susceptibility gene in the development of liver cancer remains unclear. CHMP3 was found to be associated with pyroptosis by bioinformatics analysis of data from patients with hepatocellular carcinoma (HCC) in The Cancer Genome Atlas database. It was aimed to explore the role and potential mechanisms of CHMP3 in the development of liver cancer. The expression of CHMP3 at the tissue level was examined using immunohistochemistry and western blot analysis. Subsequently, HepG2 and Huh­7 cells were transfected with small interfering RNA and overexpression plasmids to change CHMP3 expression. The proliferative capacity of cells was examined using colony formation and Cell Counting Kit­8 assays. Wound healing and Transwell assays were used to examine the migratory and invasive abilities of the cells. Transmission electron microscopy was used to observe changes in cell morphology. Western blotting was used to examine the expression of caspase­1 signaling pathway related proteins, a classic pathway of pyroptosis. In addition, a xenograft tumor model was used to examine the tumorigenic ability of CHMP3 in vivo. The results demonstrated that CHMP3 expression was upregulated in HCC and was associated with poor prognosis. Knockdown or overexpression of CHMP3 inhibited or promoted the proliferation, migration and invasion of liver cancer cells. Knockdown of Huh­7 showed changes in cell membrane integrity as well as cytoplasmic leakage. Furthermore, knockdown of CHMP3 may activate the caspase­1 pyroptosis signaling pathway which in turn inhibits the progression of liver cancer, and this effect can be reversed by the caspase­1 inhibitor AYC. In conclusion, CHMP3 may affect the development of liver cancer through the caspase­1­mediated pyroptosis pathway.


Assuntos
Carcinoma Hepatocelular , Complexos Endossomais de Distribuição Requeridos para Transporte , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Caspase 1/genética , Caspase 1/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Piroptose/genética , Transdução de Sinais , Animais
15.
Physiology (Bethesda) ; 39(1): 18-29, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962894

RESUMO

The Nedd4 family of E3 ubiquitin ligases, consisting of a C2-WW(n)-HECT domain architecture, includes the closely related Nedd4/Nedd4-1 and Nedd4L/Nedd4-2, which play critical roles in human physiology and pathophysiology.This review focuses on the regulation of enzymatic activity of these Nedd4 proteins, as well as on their roles in regulating stability and function of membrane and other signaling proteins, such as ion channels, ion transporters, and growth factor receptors. The diseases caused by impairment of such regulation are discussed, as well as opportunities and challenges for targeting these enzymes for therapy.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Ubiquitina , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
Antiviral Res ; 221: 105786, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147902

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery plays a significant role in the spread of human viruses. However, our understanding of how the host ESCRT machinery responds to viral infection remains limited. Emerging evidence suggests that the ESCRT machinery can be hijacked by viruses of different families to enhance their replication. Throughout their life cycle, these viruses can interfere with or exploit ESCRT-mediated physiological processes to increase their chances of infecting the host. In contrast, to counteract virus infection, the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) system within the infected cells is activated to degrade the ESCRT proteins. Many retroviral and RNA viral proteins have evolved "late (L) domain" motifs, which enable them to recruit host ESCRT subunit proteins to facilitate virus transport, replication, budding, mature, and even endocytosis, Therefore, the L domain motifs and ESCRT subunit proteins could serve as promising drug targets for antiviral therapy. This review investigated the composition and essential functions of the ESCRT, shedding light on the impact of ESCRT subunits and viral L domain motifs on the replication of viruses. Furthermore, the antiviral effects facilitated by the ESCRT machinery have been investigated, aiming to provide valuable insights to guide the development and utilization of antiviral drugs.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Viroses , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Transporte Proteico , Proteínas Virais/metabolismo , Interferons/metabolismo , Ubiquitina-Proteína Ligases , Replicação Viral , Liberação de Vírus
17.
Front Cell Infect Microbiol ; 13: 1163569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125905

RESUMO

The African swine fever virus (ASFV) is strongly dependent on an intact endocytic pathway and a certain cellular membrane remodeling for infection, possibly regulated by the endosomal sorting complexes required for transport (ESCRT). The ESCRT machinery is mainly involved in the coordination of membrane dynamics; hence, several viruses exploit this complex and its accessory proteins VPS4 and ALIX for their own benefit. In this work, we found that shRNA-mediated knockdown of VPS4A decreased ASFV replication and viral titers, and this silencing resulted in an enhanced expression of ESCRT-0 component HRS. ASFV infection slightly increased HRS expression but not under VPS4A depletion conditions. Interestingly, VPS4A silencing did not have an impact on ALIX expression, which was significantly overexpressed upon ASFV infection. Further analysis revealed that ALIX silencing impaired ASFV infection at late stages of the viral cycle, including replication and viral production. In addition to ESCRT, the accessory protein ALIX is involved in endosomal membrane dynamics in a lysobisphosphatydic acid (LBPA) and Ca2+-dependent manner, which is relevant for intraluminal vesicle (ILV) biogenesis and endosomal homeostasis. Moreover, LBPA interacts with NPC2 and/or ALIX to regulate cellular cholesterol traffic, and would affect ASFV infection. Thus, we show that LBPA blocking impacted ASFV infection at both early and late infection, suggesting a function for this unconventional phospholipid in the ASFV viral cycle. Here, we found for the first time that silencing of VPS4A and ALIX affects the infection later on, and blocking LBPA function reduces ASFV infectivity at early and later stages of the viral cycle, while ALIX was overexpressed upon infection. These data suggested the relevance of ESCRT-related proteins in ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Complexos Endossomais de Distribuição Requeridos para Transporte , Suínos , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vírus da Febre Suína Africana/genética , Proteínas de Ligação ao Cálcio/metabolismo , Endossomos/metabolismo , Endocitose
18.
J Cell Biol ; 222(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37922419

RESUMO

Midbodies function during telophase to regulate the abscission step of cytokinesis. Until recently, it was thought that abscission-regulating proteins, such as ESCRT-III complex subunits, accumulate at the MB by directly or indirectly binding to the MB resident protein, CEP55. However, recent studies have shown that depletion of CEP55 does not fully block ESCRT-III targeting the MB. Here, we show that MBs contain mRNAs and that these MB-associated mRNAs can be locally translated, resulting in the accumulation of abscission-regulating proteins. We demonstrate that localized MB-associated translation of CHMP4B is required for its targeting to the abscission site and that 3' UTR-dependent CHMP4B mRNA targeting to the MB is required for successful completion of cytokinesis. Finally, we identify regulatory cis-elements within RNAs that are necessary and sufficient for mRNA trafficking to the MB. We propose a novel method of regulating cytokinesis and abscission by MB-associated targeting and localized translation of selective mRNAs.


Assuntos
Proteínas de Ciclo Celular , Citocinese , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinese/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HeLa , RNA Mensageiro/genética , Telófase
19.
EMBO Rep ; 24(12): e57300, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37987447

RESUMO

Lysosomes are degradative organelles and signaling hubs that maintain cell and tissue homeostasis, and lysosomal dysfunction is implicated in aging and reduced longevity. Lysosomes are frequently damaged, but their repair mechanisms remain unclear. Here, we demonstrate that damaged lysosomal membranes are repaired by microautophagy (a process termed "microlysophagy") and identify key regulators of the first and last steps. We reveal the AGC kinase STK38 as a novel microlysophagy regulator. Through phosphorylation of the scaffold protein DOK1, STK38 is specifically required for the lysosomal recruitment of the AAA+ ATPase VPS4, which terminates microlysophagy by promoting the disassembly of ESCRT components. By contrast, microlysophagy initiation involves non-canonical lipidation of ATG8s, especially the GABARAP subfamily, which is required for ESCRT assembly through interaction with ALIX. Depletion of STK38 and GABARAPs accelerates DNA damage-induced cellular senescence in human cells and curtails lifespan in C. elegans, respectively. Thus, microlysophagy is regulated by STK38 and GABARAPs and could be essential for maintaining lysosomal integrity and preventing aging.


Assuntos
Caenorhabditis elegans , Microautofagia , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Lisossomos/metabolismo , Membranas Intracelulares/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
20.
Nat Commun ; 14(1): 7859, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030597

RESUMO

Ligand-induced epidermal growth factor receptor (EGFR) endocytosis followed by endosomal EGFR signaling and lysosomal degradation plays important roles in controlling multiple biological processes. ADP-ribosylation factor (Arf)-like protein 4 A (Arl4A) functions at the plasma membrane to mediate cytoskeletal remodeling and cell migration, whereas its localization at endosomal compartments remains functionally unknown. Here, we report that Arl4A attenuates EGFR degradation by binding to the endosomal sorting complex required for transport (ESCRT)-II component VPS36. Arl4A plays a role in prolonging the duration of EGFR ubiquitinylation and deterring endocytosed EGFR transport from endosomes to lysosomes under EGF stimulation. Mechanistically, the Arl4A-VPS36 direct interaction stabilizes VPS36 and ESCRT-III association, affecting subsequent recruitment of deubiquitinating-enzyme USP8 by CHMP2A. Impaired Arl4A-VPS36 interaction enhances EGFR degradation and clearance of EGFR ubiquitinylation. Together, we discover that Arl4A negatively regulates EGFR degradation by binding to VPS36 and attenuating ESCRT-mediated late endosomal EGFR sorting.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Receptores ErbB , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HeLa , Receptores ErbB/metabolismo , Endossomos/metabolismo , Transdução de Sinais , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...